Redaktion

Projekt News

11.Juni 2024 – Projektergebnisse Studierenden der Hochschule Ruhr West präsentiert


Eine Gruppe von Studierenden der Hochschule Ruhr West war im Rahmen ihrer Projektwoche auf Exkursion in Berlin, um unter anderem in der retail garage die neuesten Technologien unter KI-Beteiligung kennenzulernen und sich darüber austauschen.  Die Geschäftsführerin der Zentralstelle für Berufsbildung im Handel e.V. (zbb), Bettina Wilhelm, betonte in Ihrem Impuls-Vortrag die Wichtigkeit der Weiterbildung und Qualifizierung des Personals im Handel und stellte die möglichen Nutzungsszenarien der im Projekt Ele-com entwickelten KI-Assistenzsysteme für die ILIAS Lernplattform vor. Im Anschluss an den Vortrag fand ein reger Austausch zu weiteren Einsatzgebieten der entwickelten KI-Systeme statt. Die heutigen Studierenden – angehende Führungskräfte – zeigten bereits ein großes Interesse am Thema Personalentwicklung mithilfe neuer Technologien.

Die Geschäftsführerin der zbb präsentiert das Projekt Ele-com

Projekt News

Das Projekt im Endspurt – Angebot geht an die Öffentlichkeit


Das Projekt Ele-com läuft nur noch bis zum 30.04.2024. Die Ergebnisse werden bereits aktiv der Öffentlichkeit präsentiert und können im Rahmen des Invite ToolChecks 2.0 von 04.-28.03.2024 von allen Interessenten getestet werden: https://www.invite-toolcheck.de/html/de/index.php

Die Innovation und Flexibilität beim Einsatz unseres Lernangebotes wecken bereits viel Aufmerksamkeit in der Handelswelt. HANDEL 4.0 berichtet über das E-Learning Angebot aus dem Projekt ELe-com zum Thema Onlinehandel in seinem aktuellen Newsletter und auf der Webseite unter: https://handel4punkt0.de/index.php/aktuelles-im-handel-4-0/623-e-learning-im-onlinehandel-mit-ele-com

Projekt News

Entdecken Sie ELe-com bei INVITE ToolCheck 2.0

Wir freuen uns, Ihnen mitteilen zu können, dass ELe-com, eines der 34 Gewinnerprojekte des INVITE-Wettbewerbs, seinen Prototyp im Rahmen des ToolCheck 2.0 präsentieren wird (voraussichtlich im März 2024).

Besuchen Sie bereits unsere Projektseite https://www.invite-toolcheck.de/html/de/ELe-com.php und verpassen Sie nicht die Gelegenheit, unsere KI-Assistenten LENA und EMIL persönlich kennenzulernen. Wir halten Sie auf dem Laufenden und informieren Sie rechtzeitig über den offiziellen Start.

In der ersten Phase des INVITE-ToolChecks im Dezember 2022 wurden bereits über 1.000 Prototypentestungen registriert. Ziel der öffentlichen Prototypentestungen ist es, den aktuellen Forschungs- und Entwicklungsstand des KI-Einsatzes im Alltag der beruflichen Weiterbildung erlebbar zu machen.

Neben den vielfältigen Branchen beim INVITE-ToolCheck vertritt ELe-com den Handel mit dem Fokus auf E-Commerce. Unser Lernangebot bietet Antworten auf die wichtigsten Fragen rund um den Onlinehandel. Egal, ob Sie bereits Waren und Dienstleistungen online anbieten oder dies planen, unsere KI-Assistenzsysteme führen Sie zu den gesuchten Antworten auf unserer Lernplattform.

Erfahren Sie mehr über den INVITE-ToolCheck und über das Projekt ELe-com unter https://www.invite-toolcheck.de/html/de/ELe-com.php.

Projekt News

Barrierefreiheit ELe-com

 

In der frühen Entwicklungsphase des Projektes ELe-com wurde Barrierefreiheit bereits bedacht. Um das praktisch voranzutreiben, wurde im Rahmen eines Workshops Perspektive übernommen und das Endprodukt durch verschiedene Brillen betrachtet.

Eine einzelne Spielfigur ist durch eine rote Linie von einer Gruppe weiterer Spielfiguren getrennt

Schnell fiel auf, dass beispielsweise Alternativtexte bei Abbildungen auf der Projekthomepage gefehlt haben. Auch die Erstellung der Micro-Learning-Einheiten, sowie das Gestalten der Landingpage wurde als Aufgabe erkannt. Als Ergebnis können zukünftig alle, insbesondere Menschen mit verschiedensten Einschränkungen von einer besseren Usability und somit einem anwenderfreundlicheren Endprodukt profitieren.

Entsprechend WCAB Vorgabe wird so unser Endprodukt wahrnehmbar, bedienbar, verständlich und robust sein.

Wahrnehmbar, indem…

… Untertitel für Video generiert wurden.

… Texte für alle nicht-textuellen Inhalte erstellt wurden.

… Inhalte leicht voneinander unterscheidbar, anpassbar und auf verschiedene Arten dargestellt werden können.

Bedienbar, indem…

… es per Tastatur bedienbar ist.

… ausreichend Zeit zum Lesen und Benutzen gegeben wird.

… Animationen und blinkende Inhalte weggelassen wurden.

… die Inhalte gut navigierbar und leicht auffindbar sind.

Verständlich, indem…

… möglichst einfache Sprache und keine Abkürzungen verwendet wurden.

… das Endprodukt vorhersehbar ist.

… Hilfestellungen zur Verfügung stehen.

Robust, indem es mit vielen Benutzeragenten und assistierender Technik kompatibel ist.

Projekt News

Warum es so wichtig ist, Kunden und Kundinnen kanalübergreifend zu bedienen

Customer Journey im E-CommerceKonsument:innen haben heute die Möglichkeit, im gesamten Kaufprozess zwischen unterschiedlichen Informations- und Kaufkanälen zu wählen und diese nach Belieben miteinander zu kombinieren. Die Customer Journey wird dadurch immer komplexer. Doch was müssen Händler:innen heute tun, um in drei bis fünf Jahren noch erfolgreich zu sein?

Kein Babysitting nötig – schon gar nicht für die Jüngsten

Für Kunden und Kundinnen, insbesondere für die junge Generation der unter 35-Jährigen, ist es Normalität, in der Customer Journey zwischen verschiedenen Informations- und Kaufkanälen zu wechseln. Dabei erwarten sie eine nahtlose Einkaufserfahrung, die über alle Kanäle hinweg konsistent und benutzerfreundlich ist. Um Abbrüche im Kaufprozess zu vermeiden, sollten Unternehmen sicherstellen, dass Services und Anwendungen in der Navigation einfach und intuitiv zu bedienen sind. Kund:innen wollen in ihrer Autonomität nicht eingeschränkt werden. Diese Möglichkeit bieten Omnichannel Services. Damit sind Services gemeint, die verschiedene Kanäle gefühlt nahtlos miteinander verbinden können.

Online bedeutet nicht unpersönlich

Die Basis einer Omnichannel-Strategie ist die Verknüpfung und Verlinkung verschiedener Kanäle. Eine Weiterleitung von einem Instagrampost direkt in den Onlineshop kann ein Beispiel sein. Der Versuch, den Kunden und Kundinnen n ein selbstständiges und nahtloses Kauferlebnis zu ermöglichen, bedeutet aber keineswegs, dass im E-Commerce kein Kundenkontakt mehr möglich ist. Unternehmen können sich als Problemlöser, Unterstützer sowie Begleiter platzieren und somit indirekt einen positiven Ausstrahleffekt auf das Marken- sowie Kauferlebnis generieren. Dabei kommt es darauf an, sich an den richtigen Stellen mit einem echten Mehrwert zu positionieren. Ein Live-Chat im Onlineshop kann beispielsweise dazu führen, dass sich Kund:innen auch bei beratungsintensiven Produktkäufen online gut beraten und aufgehoben fühlen.

Heute brandheiß, morgen nur noch lauwarm: Innovationen hegen und pflegen

Die Erwartungshaltungen der Kund:innen an Omnichannel-Services steigen stetig: Ein innovativer Service von heute wird bereits morgen als Hygienefaktor gesehen – gerade bei den tendenziell technikaffinen jüngeren Generationen. Den Onlineshop und die Mitarbeitenden auf dem neusten Stand zu halten, ist demnach essentiell für den Erfolg. Dabei wichtig: Trial-and-Error – es gibt leider nicht die eine perfekte Lösung für alle Retailer. Im Spannungsfeld von Kundenanforderungen und Investitionskosten müssen Unternehmen ihren Weg finden und viel testen. Dabei hilft eine kulturelle wie auch personelle Organisationsstruktur, die eine Erarbeitung und Implementierung von Innovationen unterstützt und erleichtert.

Erfolgsfaktor Mitarbeiterkompetenz

Die schnelle Entwicklung von innovativen Lösungen für Onlineshops aller Art erfordert eine ebenso effiziente Schulung der eigenen Mitarbeitenden. Adaptive E-Learning Modelle können diesen Anforderungen gerecht werden. In einem Umfeld von hohem Schulungsbedarf und konsequent hohen Auslastungen bedarf es kompakter und zielgerichteter Schulungsmethoden. Im Projekt ELe-com möchten wir demnach ein intelligentes Lern-System entwickeln, das Menschen unkompliziert zu der berufsbezogenen Weiterbildung führt, die sie wollen/brauchen und die ihnen aufgrund ihres Nutzerverhaltens über verschiedene Lernwege ein erfolgreiches Lernen ermöglicht.

Projekt News

Welche Rolle spielt das Microlearning bei ELe-com?

Ein Puzzle im Hintergrund mit zwei fehlenden Teilchen. Eine Hand mit dem Handy davor. Auf dem Handybildschirm ist eine Suchoption aktiviert.

Digitales Lernen erfordert vollkommen neue Methoden der Wissensaneignung. Eine Möglichkeit sind dabei kurzformatige Trainings, die unter dem Stichwort „Microlearning“ firmieren.  Dabei werden die Inhalte in Häppchen von circa 10 Minuten verpackt. Dadurch lässt sich das Lernen problemlos in den Alltag einbinden. Darüber hinaus entspricht das auch dem aktuellen Trend nach schneller Informationsaufnahme und kurzen Aufmerksamkeitsspannen.

Beim Microlearning werden die Lerninhalte auf viele kleine Einheiten verteilt und digital aufbereitet. Verbindet man dies noch mit spielerischen Aspekten oder einer Geschichte, kann der Lernerfolg deutlich verbessert werden. Dies gilt auch insbesondere dann, wenn die Einheiten mit einem direkten Feedback verknüpft sind.

Microlearning macht immer dann Sinn, wenn sich die Lerninhalte in kleine Sequenzen aufteilen lassen. Besonders bekannt ist dies beim Vokabellernen oder bei der Festigung bestimmter Bewegungen im Sport oder in der Rehabilitation. Auch informelles Lernen am Arbeitsplatz kann als Microlearning aufgefasst werden. So kann ein kurzer Blick in ein YouTube-Video die notwendige Wissenslücke schließen.    

Warum ist Microlearning erfolgreich?

Ein Erfolgsfaktor des Microlearning ist die Einbettung des Lernens in den Alltag der Lernenden. Durch die kurze Zeitspanne der einzelnen Einheiten können die Lernenden an jedem beliebigen Ort zu jeder beliebigen Zeit darauf zugreifen. Ob in der Straßenbahn, in einer Warteschlange an der Kinokasse oder zwischen zwei Kund:innen im Geschäft. Lernen wird dadurch ein ständiger Begleiter im Alltag der Lernenden, ohne ihre Aufmerksamkeit zu stark zu beanspruchen.

Ein weiterer Erfolgsfaktor liegt in der kostengünstigen und schnellen Erweiterung bzw. Aktualisierung der Inhalte. Wird das Instrument von den Lernenden am Arbeitsplatz angenommen, können neue Lerninhalte schnell und günstig produziert und eingebunden werden. Dies kann auch durch die Mitarbeiter:innen selbst geschehen (User generated Content). So können dabei Videos im YouTube-Format, Text(Sprach)nachrichten über WhatsApp oder 280 Zeichen über Twitter genutzt werden. Auch Quizapps sind durch ihr direktes Feedback und dem Wettbewerbscharakter gut geeignet. 

Wie kommen Microlearning und KI zusammen?

Die Qualität von Microlearning-Kursen wird durch die KI verbessert, indem anspruchsvolle Inhalte und zeitnahes Feedback generiert werden und den Lernenden gezielte Lernmöglichkeiten geboten werden – passgenau und personalisiert.

Im Rahmen des Projektes Ele-com werden Microlearnings zum Thema Customer Journey entwickelt, die in drei verschiedenen Lernformaten (Lesen, Podcast, interaktives Video) und in drei verschiedenen Niveaus zur Verfügung gestellt werden. Die Nutzer:innen können dabei entscheiden, ob Sie mit Hilfe der KI lernen oder selbst in der Fülle an Microlearnings stöbern wollen. Die KI unterstützt die Lernenden, indem sie aus dem bisherigen Lernverlauf der Nutzer:innen neue Vorschläge generiert, welche Lerneinheit als nächstes sinnvoll ist.

Ein weiterer Vorteil der KI ist auch die Möglichkeit zur Personalisierung der Lerndaten. Das ermöglicht es den Nutzer:innen, genau die Lerneinheiten in dem Format und dem Niveau zu erhalten, welches den Lernerfahrungen und Lernvorlieben der einzelnen Person entspricht. Das reduziert Gefahren der Über- oder Unterforderung.

Was sind die Grenzen des Microlearning?

Die Einsatzfelder von Microlearning sind vielfältig; genauso wie der mögliche Einsatz der digitalen Technik. Aber Microlearning löst nicht alle Lernprobleme. Insbesondere, wenn komplexere Inhalte gelernt werden sollen oder der Trainingseffekt im Mittelpunkt steht, sind andere Lernformate oft besser geeignet. Es gilt also immer, zunächst das Ziel zu bestimmen und dann die geeignete Methode anzupassen.

Die Mitarbeiter:innen sollten auch nicht mit Wissen überfrachtet werden. Insbesondere wenn es zusammenhanglos, also ohne eine affizierende Geschichte vorgetragen wird, ist der Lernerfolg eher bescheiden. Für viele Lernbereiche ist auch immer noch der pädagogische Bezug zwischen den Lernenden und den Lehrenden entscheidend für den Lernerfolg.  

Beachtet man diese limitierenden Aspekte, kann Microlearning eine wichtige Ergänzung der betrieblichen Personalentwicklung darstellen.

Projekt News

Woher weiß die KI, was die Lernenden machen (xAPI)

Schematische Darstellung von Schnittstellen der Datenübertragung mithilfe von xAPI

Im Projekt ELe-Com haben wir es uns zur Aufgabe gemacht, ein System mit mehreren Lernmöglichkeiten zu entwickeln, das das Lernen für die Nutzer:innen mit unterschiedlichen Lernbedürfnissen und Präferenzen attraktiver und leichter macht. Das entwickelte Lernangebot wird in Form von Micro-Lerneinheiten über die Lernplattform ILIAS zur Verfügung gestellt. Die Nutzer:innen können sich freiwillig entscheiden, ob sie von unseren Assistenzsystemen komplett, teilweise oder gar nicht geführt werden. Außerdem besteht die Möglichkeit, aus drei Lernformaten auszuwählen – Lesen, Hören oder Sehen. Die Nutzer:innen, die unseren Lernnavigator LENA nutzen möchten, geben zu Beginn ihre Lernpräferenzen über eine kurze Abfrage an und legen mit dem Lernen los. Ab diesem Zeitpunkt kommt das intelligente KI-basierte Empfehlungssystem – EMIL zur Unterstützung. EMIL sammelt und wertet die Daten zu Lernaktivitäten aus, um den Lernenden Empfehlungen auszusprechen, damit sie schneller und effektiver zum Lernziel kommen. Im Weiteren möchten wir Ihnen kurz darstellen, welche Anforderung wir bezüglich der Datenerfassung hatten und welche Lösung dafür eingesetzt wird.

Die Anforderung: Daten

ILIAS ist hinsichtlich der Erfassung von Lernaktivitäten beschränkt. ILIAS weiß grundsätzlich, ob ein Objekt noch offen, in Bearbeitung oder abgeschlossen ist. Oder ob eine Datei angeklickt wurde oder bis zu welcher Stelle in einer Lernsequenz Lernende die Inhalte bearbeitet haben. ILIAS kann außerdem Lernfortschritte aus SCORM-Dateien erfassen.
Das KI-basierte Entscheidungsmodul EMIL benötigt jedoch mehr Daten, um gute Empfehlungen für adaptives Lernen auszusprechen. Mehr als ILIAS im Standard zur Verfügung stellt.
Für gute Empfehlungen ist es z.B. gut zu wissen, mit welchen Lernmedien gelernt wurde. Ob bspw. ein Video angeklickt wurde. Ob es zu Ende geschaut wurde oder an welcher Stelle es abgebrochen wurde. Daraus ließe sich ableiten, ob eine angegebene Präferenz tatsächlich beibehalten wird.
Ober auch, welche Antworten in einem Quiz gegeben wurden. Wieviel falsche, wieviel richtige und bei wieviel Durchläufen? Daraus könnte die KI das bisherige Wissen und den aktuellen thematischen Bedarf besser ableiten.

Die Lösung: xAPI

Damit EMIL ausreichend Daten für präzise Empfehlungen bekommt, setzen wir im Projekt xAPI ein.
xAPI ist ein Datenmodell, das im Prinzip jeder aus den Statusmeldungen von Sozialen Netzwerken kennt: Ein Mensch | hat angeschaut | ein Video. Jemand | hat ein Like hinterlassen | zu einem bestimmten Bild. Subjekt, Prädikat und Objekt.

Dieses grundsätzliche Datenmodell lässt sich um weitere Informationen ergänzen: Actor (wer hat gehandelt) > Verb (was wurde getan) > Object (wo fand die Handlung statt) > Result (mit welchem Ergebnis) > Context (erweiterte Informationen) > Timestamp (wann wurde am Objekt gearbeitet).

Die Sache ist nur: ILIAS 7 kann kein xAPI.

Die Umsetzung: Plugin für ILIAS

Um diese Lücke zu schließen, kooperierten wir mit einem weiteren INVITE Projekt „VerDatAs“ (https://www.verdatas.de/) und setzen das Plugin „Events2Lrs“ ein, das vom Projektpartner internet-lehrer gmbh (https://internetlehrer-gmbh.de) entwickelt wurde.

  • Das Plugin definiert, zu welchem Learning Record Store (LRS) die xAPI-Daten gesendet werden. Der Learning Record Store spielt eine wichtige Rolle, da hier alle erhobenen xAPI-Statements gesammelt werden, und an die KI zur Verarbeitung weitergeleitet werden können.
  • Das Plugin erlaubt mit je einem Klick zu definieren, welche Verben aus den H5P-Elementen, aus denen die Micro Lerneinheiten bestehen, an den LRS weitergeleitet werden – z.B. attempted, interacted oder completed.
  • Außerdem integriert das Plugin ILIAS-Events, die als xAPI-Statements an den LRS weitergeleitet werden – was ILIAS im Standard nicht kann. Das betrifft Lernfortschritte von ILIAS-Objekten und die Anzahl der Objekt-Aufrufe allgemein, und Events rund um ILIAS-Tests im Besonderen.

Damit bekommen wir erstmals ein feingranuliertes Bild davon, was in ILIAS und den H5P-Elementen passiert. Und so funktioniert das Plugin im Zusammenspiel mit den anderen Systemelementen:

  • Ein Lernobjekt in ILIAS, das H5P-Elemente beinhaltet, wird von einem angemeldeten Benutzer mit dessen Profildaten und Präferenzen aufgerufen.
  • Die Aktivität erzeugt xAPI-Statements. Diese Statements werden vom Plugin erfasst, und im nächsten Schritt an den LRS weitergeleitet – zusammen mit den Angaben über den jeweiligen Lernenden und dessen Präferenzen (xAPI-Datenmodell: „Context“).
  • Der Learning Record Store informiert ILIAS über die erfassten Lernstände.

Diese erfassten xAPI-Statements werden vom LRS während dieser Vorgänge parallel an das Entscheidungsmodul EMIL zur Verarbeitung weitergeleitet. Was genau dort passiert, war z. B. Gegenstand des vorherigen News Artikels zum Thema „Was macht eigentlich EMIL? – Status Quo des Entscheidungsmoduls“.

Projekt News

Was macht eigentlich EMIL? – Status Quo des Entscheidungsmoduls

Illustration Künstliche IntelligenzIn den letzten Monaten haben wir uns intensiv mit der Entwicklung unseres KI-basierten Entscheidungsmoduls EMIL beschäftigt. Die Entwicklung basiert auf dem neuesten Stand der Technik von Fully Connected Neural Networks, zu Deutsch etwa „vollständig verbundene neuronale Netzwerke“. Ziel des zu entwickelnden KI-Modells ist es, Empfehlungen zu individuellen Lernpfaden und Lernangeboten auf der Grundlage der Bedürfnisse von Nutzer:innen zu geben.

Zu diesem Zweck wurden verschiedene Empfehlungssysteme systematisch untersucht, um ihre Eignung für das Projekt zu ermitteln. Das Hauptaugenmerk lag dabei auf den zu erwartenden Daten, die entweder direkt aus dem Lernmanagementsystem (LMS) Illias oder indirekt über eingebettete Plug-ins wie H5P bezogen werden. Die so erhaltenen Daten werden in einem Learning Record Stores (LRS) gespeichert. Die damit erstellten Nutzerprofile liefern der KI weitere Test- und Trainingsdaten. Nach dem Vergleich von elf Empfehlungssystemen wurde ein hybrides Modell entwickelt, das aus einem kollaborativen, einem wissensbasierten und einem inhaltsbasierten Empfehlungssystem besteht.

Die Umsetzung des Empfehlungssystems erfolgt über die Nutzung neuronaler Netze, in denen alle Neuronen miteinander verbunden sind. Als Input dienen dabei sämtliche Interaktionsdaten der Nutzer:innen mit den Micro Learning Einheiten (MLEs) im LMS. Der Output des Netzwerkes besteht aus einer Vorhersage der Interaktionswahrscheinlichkeiten der Nutzer:innen mit anderen MLEs im LMS. Dieses Verhalten beschreibt die Bedürfnisse der Nutzenden mit den Lerninhalten, ähnlich den Empfehlungen von YouTube oder der „Two-Tower”-Strategie von Google.

Bekannte Probleme von KIs, wie das Problem der Datenknappheit und das Cold-Start Problem, werden im Rahmen des Projekts bearbeitet und durch die Untersuchung verschiedener Strategien gelöst:

  1. Das Problem der Datenknappheit ergibt sich aus einer zu geringen Anzahl von Trainingsdaten. Um dies zu umgehen, werden zwei Strategien erprobt:
    • Online-Batch Training: Das neuronale Netz wird während des Betriebs trainiert und evaluiert.
    • GAN (Generative Adversarial Network): Das neuronale Netz wird vor der Ausführung des Modells mit künstlich generierten Daten ergänzt und trainiert, um so die Genauigkeit der Gewichte einzelner Neuronen zu verbessern. Die künstlichen Daten basieren dabei auf wenigen, realen Daten von Nutzer:innen.
  2. Das Cold-Start Problem besteht darin, dass das System keine Aussagen über Nutzer:innen treffen kann, über die es noch nicht genügend Informationen gesammelt hat. Um dies zu umgehen, liefern Daten einer Initiativumfrage dem Modell erste Informationen über die/den Nutzenden, bevor das System die Vorhersagen trifft.
Projekt News

Die Ausgestaltung der Lerneinheiten – auf die Nutzerpräferenzen kommt es an!

Kollegen sehen sich das Umfrageblatt

Um die Passung von Themen, Formaten und Schwierigkeitslevel der Lerneinheiten zu prüfen und diese optimal auf die Teilnehmer:innen auszurichten, haben wir eine Conjoint-Analyse durchgeführt. Wie diese Analyse genau funktioniert, können Sie hier nachlesen.

Was sind die wichtigsten Erkenntnisse?

Zunächst wurde im Rahmen der Conjoint-Analyse die Relevanz der einzelnen Themen abgefragt, die in den Lerneinheiten behandelt werden sollen. Es zeigt sich, dass alle gewählten Themen für die Befragten nicht nur wichtig sind, sondern auch in etwa die gleiche Bedeutung aufweisen. Daher sollte bei der Erstellung der einzelnen Lerneinheiten auf die Vielfalt der Themen geachtet und diese entsprechend abgedeckt werden.

In einer Conjoint-Analyse wird der persönliche Nutzen einer Lerneinheit für die Teilnehmer:innen berechnet, wodurch abgeleitet werden kann, wie die einzelnen Lerneinheiten ausgestaltet sein sollten. Auch die Wichtigkeit einzelner Aspekte wie Thema, technisches Format, Level und inhaltliches Format kann dadurch bestimmt werden. Um eine Priorisierung bei der Erstellung der Lerneinheiten vorzunehmen, werden die einzelnen Lerneinheiten gemäß ihrem Nutzen abschließend anhand eines Ampelsystems (rot/gelb/grün) bewertet.

Darstellung der Nutzenwerte vom technischen Format, Level und inhaltlichen Format

Die Grafik zeigt die Ergebnisse der Conjoint-Analyse am Beispiel des Themenfeldes SEO & SEA. Dabei werden für das technische Format, das Level und das inhaltliche Format die jeweiligen Nutzenwerte berechnet. In diesem Beispiel hat beim technischen Format das Erklärvideo den höchsten Nutzen (0,49) und das E-Book den geringsten (-0,67). Um zu ermitteln, welche Kombination den höchsten Nutzen für die Teilnehmer:innen aufweist, werden die einzelnen Nutzenwerte addiert. Daraus lässt sich somit ableiten, dass beim Thema SEO & SEA ein Erklärvideo für fortgeschrittene Anfänger, das einen Praxistipp beinhaltet, den höchsten Nutzen für die Teilnehmer:innen aufweist (0,49 + 0,11 + 0,12 = 0,72). Für alle möglichen Kombinationen lassen sich nun die Nutzenwerte einzeln ermitteln.

Im Anschluss werden alle potenziellen Lerneinheiten anhand eines Ampelsystems eingestuft. Die Lerneinheiten, die den höchsten Nutzen für die Teilnehmer:innen haben, werden mit grün bewertet, rot markierte Lerneinheiten haben einen geringeren Nutzen. Diese Werte können in verschiedenen Phasen des weiteren Projektablaufs genutzt werden, zum Beispiel zur Priorisierung bei der Erstellung der Lerneinheiten oder als Unterstützung der KI zur Auswahl der jeweiligen Einheit im konkreten Lernprozess. So sollte beispielsweise Lerneinheit 1 (grün bewertet) der Lerneinheit 3 (rot bewertet), vorgezogen werden. Analog zu diesem Beispiel sind alle in der Conjoint-Analyse abgefragten Themen bewertet worden.Darstellung des Ampelsystems für die Einordnung des Nutzens von MLE

Was bedeutet das für die Ausgestaltung der Lerneinheiten?

Mithilfe der Ergebnisse lassen sich auch generelle Empfehlungen für die Ausgestaltung der Lerneinheiten ableiten. So bringen Videos und Lernmodule themenübergreifend einen höheren Nutzen als textlastige Formate. Da die Conjoint-Analyse aber gezeigt hat, dass das Format insgesamt mit deutlichem Abstand am wichtigsten für die Teilnehmer:innen ist, sollten die Themen in verschiedenen Formaten ausgearbeitet werden, um alle Lernenden zielführend abzuholen und ihnen ihre favorisierte Lerneinheit bieten zu können. Außerdem stellt sich heraus, dass es bei den meisten Themen vor allem Grundwissen benötigt und es zu den einzelnen Themen nicht nur Lerneinheiten geben sollte, für die es viel Vorwissen bedarf, sondern auch solche, die mit wenig Erfahrung erfolgreich abgeschlossen werden können. Dadurch adressiert das digitale Lernangebot sowohl Anfänger als auch Profis der einzelnen Themengebiete. Insgesamt besteht der größte Nutzen, wenn den Teilnehmer:innen eine Kombination aus Theorie und Praxisbeispielen dargelegt wird und sie am Ende der Lerneinheit konkrete Tipps mit an die Hand bekommen, die sie in ihrem Unternehmen umsetzen können.